Phonon-mediated superconductivity in Mg intercalated bilayer borophenes

Ji-Hai Liao, a Yin-Chang Zhao, b,i Yu-Jun Zhao, ac Hu Xu d and Xiao-Bao Yang b,i ac

Using first-principles calculations, we investigate the structural, electronic and superconducting properties of Mg intercalated bilayer borophenes B_xMgB_y ($x = 2-5$). Remarkably, B_2MgB_2 and B_3MgB_3 are predicted to exhibit good phonon-mediated superconductivity with a high transition temperature (T_c) of 23.2 K and 13.3 K, respectively, while B_4MgB_4 is confirmed to be more practical based on the analyses of its stability. The densities of states at in-plane orbitals at the Fermi level are found to be dominant at the superconducting transition temperature in Mg intercalated bilayer borophenes, providing an effective avenue to explore Mg–B systems with high T_c.

Introduction

Two-dimensional (2D) materials including graphene,1 silicene,2–4 phosphorene,5,6 and h-BN7–9 have attracted tremendous interest due to their novel properties. Theoretical studies have suggested a set of freestanding borophenes by introducing hexagonal vacancies in the triangular lattice,10–15 where the hexagonal vacancy density (η) and the coordination number (CN) of boron atoms are used for the description and classification of borophenes.11 Experimentally, borophenes of a striped phase ($\delta_{1,2}$ and $\beta_{1,2}$) and a homogeneous phase (χ_3) have been successfully synthesized on a Ag(111) surface using a B atomic source, as confirmed by first-principles simulations.18,19 During the nucleation and growth on the Ag(111) surface,20 the $\beta_{1,2}$ sheet with 1/6 vacancies is energetically preferable, whose computed band structures agree with the observed angle-resolved photoelectron spectrum,21 with simulated STM images in better agreement with the experimental observation.22 Due to their structural diversity, borophenes have been supposed to possess potential applications in catalysis,23 Li-ion batteries,24–26 electronic devices,27–32 and superconductors.33–38

Due to the vanished density of states at the Fermi level, metal adatom doping is necessary to induce superconductivity in a graphene sheet.39,40 The superconducting transition temperatures (T_c) were estimated to be 8.1 K and 1.4 K for monolayer LiC$_6$ and CaC$_6$, respectively, while they were 0.9 K and 11.5 K for graphite intercalated compounds LiC$_6$ and CaC$_6$.41,42 In a recent experiment, Li-intercalated bilayer graphene (C$_6$LiC$_6$) showed no sign of superconductivity down to 0.8 K, while superconductivity was observed at 2 K in Ca-intercalated bilayer graphene (C$_6$CaC$_6$).43 Different from graphene, borophenes are mostly metallic, and the conventional BCS superconductivity in borophenes33–36 and 2D boron allotropes45–49 is ubiquitous. In the bulk MgB$_2$ with a high T_c of 39 K, phonon-mediated superconductivity stems from the boron layers, owing to the in-plane stretching vibrational modes of boron.45–49 The T_cs in other bulk Mg–B systems, e.g. MgB$_2$, Mg$_x$B$_{10}$, and Mg$_2$B$_4$, were estimated to be below 3 K,50 and the T_c in Mg intercalated bilayer kagome borophene (B$_x$MgB$_x$-kagome) was predicted to be 4.7 K.51

In this paper, we have investigated Mg intercalated bilayer borophenes with $\eta = 1/3$, 1/4, 1/5, and 1/6, focusing on their structural stabilities, electron–phonon coupling (EPC) properties and possible superconductivity. The projected electronic density of states (EDOS) and Eliashberg function are calculated to demonstrate the superconducting mechanism in these structures, as well as the orbital-resolved and phonon-perturbed band structures and the corresponding vibrational patterns. We predict that a metastable sandwich structure of B$_2$MgB$_2$ exhibits superconductivity with the highest T_c, where the B atoms form a hexagonal lattice with a triangular Mg sheet. To balance the structural stability and superconducting properties, B$_4$MgB$_4$ will be more practical according to the formation enthalpy versus T_c characteristics.

Methods

Our calculations were performed based on density functional theory (DFT) implemented in the QUANTUM-ESPRESSO package.52
The LDA norm-conserving scheme (von-Barth–Car type) was used to generate pseudopotentials for B and Mg. The plane-wave cutoff energy was set to 100 Ry. A vacuum region of 15 Å was adopted to avoid the interaction of the periodic images. All the structures were fully relaxed until the Hellmann–Feynman force on each atom was less than 10^{-5} Ry per Bohr. A Methfessel–Paxton51 smearing width of 0.02 Ry was used for the corresponding electronic self-consistent cycles. For calculations of electronic properties, $16 \times 16 \times 1$ (16 \times 12 \times 1) Monkhorst–Pack54 k meshes were used for B_xMgB_2, B_yMgB_3, and B_zMgB_4 (B_xMgB_3).

The phonon frequencies and EPC parameter λ were calculated with $8 \times 8 \times 1$ and $8 \times 6 \times 1$ phonon wave-vector meshes and $64 \times 64 \times 1$ and $64 \times 48 \times 1$ denser k meshes, respectively. To estimate T_c, the McMillan–Allen–Dynes formula55 was used with a retarded Coulomb pseudopotential μ^* of 0.1.

Results and discussion

The structures of Mg intercalated bilayer borophenes considered in this paper are schematically shown in Fig. 1(a). 2D B_xMgB_2 is constructed from layered bulk MgB_2, and the B_1 (δ_1) sheet with $\eta = 1/3$ is a hexagonal lattice. There are two typical configurations for borophenes with $\eta = 1/4$, named δ_1 and kagome (see the inset of Fig. 1(b)).51 The Mg intercalated bilayer kagome borophene (B_xMgB_3-kagome) was predicted to be a superconductor with $T_c = 4.7$ K.51 Energetically, the Mg intercalated bilayer δ_4 borophene (B_xMgB_4) shown in Fig. 1(a) with a calculated T_c of 6.0 K (see Fig. 1(b)) is more stable than the B_yMgB_3-kagome by 0.075 Ry per cell (1.02 eV per cell). The Mg intercalated bilayer χ_3 borophene (B_xMgB_3), whose λ is estimated to be 0.64 (see Table 1), has a little higher T_c than the monolayer χ_3 sheet. Surprisingly, the superconductivity vanishes in the Mg intercalated bilayer β_{12} borophene (B_xMgB_3), while the β_{12} borophene's T_c was estimated to be 13.8 K.54

In order to study the relative structural stability of the Mg intercalated bilayer borophenes (B_xMgB_3), we have calculated the formation enthalpy $\Delta H(x)$ as56

$$\Delta H(x) = E_x - yE_1 - (1 - y)E_0,$$

where E_x, E_1, and E_0 are the normalized total energies of B_xMgB_3, bulk Mg, and the x sheet, respectively, and $y = 1/(1 + 2x)$. As shown in Fig. 1(b), the formation enthalpies of B_xMgB_3, B_yMgB_3, and B_zMgB_3 are all negative, indicating the relative stability of these 2D structures. B_xMgB_2 and B_xMgB_3-kagome51 should be less stable because of the positive formation enthalpy.

Experimentally, the layered bulk MgB$_2$ is found to be superconducting with a T_c of 39 K. Our calculated T_c for MgB$_2$ is 24.8 K, which is in agreement with previous computational results.50,57 Note that the calculated T_c is 23.2 K for 2D B_xMgB_2 from the layered bulk MgB$_2$, which is the highest T_c in the low-dimensional Mg–B system. For comparison, we consider the artificial layered bulk MgB$_2$ based on the sandwich structure B_xMgB_2, including the layered bulk MgB$_4$, MgB$_3$, and MgB$_2$. Our calculations indicate that MgB$_3$ and MgB$_4$ are dynamically stable, while the dynamical stability of the layered bulk MgB$_2$ is poor due to the presence of imaginary phonon frequencies in the Brillouin zone. Among these bulk structures, the densities of states of the in-plane orbitals at the Fermi level are dominant at the superconducting T_c, as shown in Table 1. Interestingly, for the Mg intercalated bilayer borophenes, it is also found that

![Fig. 1](image-url)
T_c decreases with decreasing in-plane EDOS at the Fermi level, rather than the total EDOS. This finding provides an effective avenue to explore Mg–B systems with high T_cs.

In a previous theoretical study, the T_c of pristine borophenes decreases as the stabilities increases, where the B$_2$ (δ_3), B$_3$ (δ_4), B$_4$ (γ_3), and B$_5$ (β_{12}) sheets with higher T_cs are less stable than the α sheet. The strain from the substrate and carrier doping also modulates T_c.[34] Note that the negative formation enthalpies of B$_3$MgB$_3$, B$_4$MgB$_4$, and B$_5$MgB$_5$ show that the structural stabilities of the Mg intercalated bilayer borophenes can be greatly enhanced. Moreover, the Mg intercalated borophenes also show the possible low-dimensional boron–magnesium configurations and their changed superconducting properties due to their reduced dimensions compared with their bulk counterparts.

To balance the structural stability and superconducting properties, we show the calculated T_cs of these Mg–B structures as a function of formation enthalpy in Fig. 1(b). The formation enthalpies of bulk MgB$_2$ are all lower than those of sandwich structures. Among magnesium borides, except for bulk MgB$_2$, the other superconducting ones in previous theoretical studies had T_cs below 3 K.[30] Herein, the layered MgB$_4$ has a calculated

![Fig. 2](image-url) The projected EDOS of (a) B$_2$MgB$_2$, (b) B$_3$MgB$_3$, (c) B$_4$MgB$_4$, and (d) B$_5$MgB$_5$ and the Fermi surfaces of (e) B$_2$MgB$_2$, (f) B$_3$MgB$_3$, (g) B$_4$MgB$_4$, and (h) B$_5$MgB$_5$. The Fermi level is set to zero, marked by the solid black line.
\(T_c \) of 5.2 K. MgB\(_2\) is the most stable with the highest \(T_c \). Of the sandwich structures, B\(_2\)MgB\(_2\) possesses the highest \(T_c \) but with the poorest structural stability, B\(_3\)MgB\(_3\) and B\(_5\)MgB\(_5\) are more stable compared with B\(_2\)MgB\(_2\), while the corresponding \(T_c \)s are much lower. Split the difference, B\(_4\)MgB\(_4\) has a high calculated \(T_c \) of 13.3 K combined with a relatively good structural stability, which will be more practical in superconducting applications.

According to conventional BCS theory,\(^{58}\) the phonon-mediated superconductivity depends on the characteristic phonon frequency \(\omega_0 \) and the EPC parameter \(\lambda \),

\[
\lambda = N_F V_{cp},
\]

where \(N_F \) is the EDOS at the Fermi level and \(V_{cp} \) is the effective pairing attractive potential.\(^{44}\) Compared with the \(\chi_3 \) (B\(_3\)) sheet, the \(N_F \) of B\(_2\)MgB\(_4\) is increased by \(\sim 60\% \), which comes from the in-plane orbitals \((s + p_x + p_y) \). However, the \(N_F \) of B\(_5\)MgB\(_5\) is reduced by \(\sim 15\% \) than that of the \(\chi_{12} \) (B\(_2\)) sheet, and the contribution of the in-plane orbitals is decreased by \(\sim 80\% \).

For the Mg intercalated bilayer borophenes, we show the projected EDOS and Fermi surface in Fig. 2. From B\(_2\)MgB\(_2\) to B\(_5\)MgB\(_5\), the amplitude of the \(p_z \) orbitals is fairly small, while there are great changes in the amplitude of the in-plane orbitals in the \(-4 \) to \(4 \) eV energy range. The in-plane part of the \(N_F \) of B\(_2\)MgB\(_3\), which changes a little near the Fermi level, accounts for only 12% of total \(N_F \). Therefore, the Fermi contour of B\(_3\)MgB\(_3\) almost all consists of \(p_z \)-derived pockets. The Fermi contour of B\(_2\)MgB\(_2\) consists of a double ring pocket and a double star pocket centered at the \(\Gamma \) point derived from the in-plane orbitals, and the six arms of the double star extended along the six \(\Gamma \)–\(M \) directions. The Fermi contour of B\(_5\)MgB\(_5\) also includes a big ring pocket centered at the \(\Gamma \) point and a small ring pocket centered at the \(K \) point derived from the \(p_z \) orbitals. For B\(_3\)MgB\(_3\), the Fermi contour consists of a rectangular pocket centered at \(Y \) (0, 0.5) derived from the in-plane orbitals, and three \(p_z \)-derived ellipsoidal pockets centered at \(X \) (0.5, 0), \(S \) (0.5, 0.5), and \(Y \), respectively. The Fermi contour of B\(_5\)MgB\(_5\) shows two \(p_z \)-derived dumbbell-shaped pockets centered at \(\Gamma \) with some borders paralleled to the \(H-H' \) line, whose midpoint is \(Y \) (0, 0.5).

The phonon dispersions with phonon linewidth \(\gamma_{q\omega} \) and Eliashberg function \(\sigma^2F(o) \) and \(\lambda(o) \) are shown in Fig. 3. Our calculations with LDA norm-conserving pseudopotentials show the dynamical stability of these sandwich structures without imaginary phonon frequencies in the Brillouin zone. The B\(_4\)MgB\(_4\)-kagome shows the dynamical stability with PBE norm-conserving pseudopotentials, which is consistent with the result of ref. 51. The imaginary phonon frequency of the transverse branch near the \(\Gamma \) point was found in the simulations of borophenes,\(^{33,35}\) germanene\(^2\) and other 2D materials,\(^{59,60}\) where the emergence of imaginary frequencies is due to the numerical difficulties in accurate calculation rather than a sign of structural transition.\(^{59}\) Imaginary phonon frequencies of the acoustical branch also occur near the \(\Gamma \) point in all these sandwich structures shown in Fig. 1(a) with PBE norm-conserving pseudopotentials. Fortunately, these imaginary frequencies have almost no influence on our EPC results. The \(\lambda \) and \(T_c \) are found to be almost the same under both PBE and LDA functionals.

As shown in Fig. 3, the vibration modes in the \(400-800 \) cm\(^{-1}\) frequency range induce the main EPC in B\(_3\)MgB\(_2\), while those of \(100-400 \) cm\(^{-1}\) induce the main EPC in B\(_2\)MgB\(_3\) and B\(_5\)MgB\(_5\). For B\(_3\)MgB\(_3\), the phonon linewidths of the vibration modes in the \(100-800 \) cm\(^{-1}\) frequency range are fairly small, leading to a small \(\lambda \) and the disappearance of superconductivity. Fig. 4 shows the EPC distribution in the Brillouin zones of these Mg intercalated borophenes. For B\(_3\)MgB\(_3\) and B\(_5\)MgB\(_5\), the region with the largest EPC is around \(\Gamma \) and \(Y \), respectively, which is consistent with the phonon linewidth shown in Fig. 3. For B\(_4\)MgB\(_4\), the point with the
largest EPC is Y, and the region with large EPC is along the H–H′ line, in which the phonon linewidth is fairly great in the 200–400 cm$^{-1}$ low frequency range and the 1000–1100 cm$^{-1}$ high frequency range. For B$_3$MgB$_3$, the region around the Γ point contributes to the major EPC, whose strength is far less than those of B$_2$MgB$_2$, B$_3$MgB$_3$, and B$_4$MgB$_4$.

The EPC in B$_3$MgB$_3$ is induced by the multiple vibration modes. Fig. 5(a) shows the orbital-resolved band structures of B$_3$MgB$_3$ and the band structure perturbed by the A$_1$ vibrational pattern at Γ (see Fig. 3(b) and 5(c)). This A$_1$ mode, in which the B atoms vibrate vertically and the Mg atoms remain silent, greatly affects the p$_z$ orbitals near the Fermi level. Fig. 5(b)
shows the orbital-resolved band structures of B_4MgB$_4$ and the band structure perturbed by the B_4 vibrational pattern at Y (see Fig. 3(c) and 5(d)). This B_4 mode, in which half of the B atoms vibrate vertically and the Mg atoms vibrate horizontally, greatly affects the p_z orbitals along the H–H′ line and the in-plane orbitals along the Γ–S line at the Fermi level.

Conclusion

In summary, we have studied the electronic structure and EPC in Mg intercalated bilayer borophenes, and their corresponding bulk structures. We predict that B_2MgB$_2$ and B_4MgB$_4$ should exhibit phonon-mediated superconductivity with a relatively high T_c and B_4MgB$_4$ would be more practical due to its better stability, indicating the possible superconductivity in the low-dimensional Mg–B system. The Mg intercalation will modulate the EDOS of the in-plane orbitals at the Fermi level, which is dominant at the superconducting T_c in Mg intercalated bilayer borophenes. These findings pave the way for the superconducting applications of two-dimensional Mg–B materials.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the NSFC (Grant No. 11474100, 11574088 and 11704322), Guangdong Natural Science Funds for the Doctoral Program (Grant No. 2017MS119) and Shandong Natural Science Funds for the Doctoral Program (Grant No. 2017A030310086), Fundamental Research Funds for the Central Universities (2017MS119) and Shandong Natural Science Funds for the Doctoral Program (ZR2017BA017). The computer times at the National Supercomputing Center in Guangzhou (NSCCGZ) are gratefully acknowledged.

References