Doping induced charge density wave in monolayer TiS$_2$ and phonon-mediated superconductivity

**Abstract**

Using first-principles calculations, we have investigated the effects of the charge doping and biaxial strain on the charge density wave (CDW) of monolayer octahedral titanium disulfide (1T-TiS$_2$). Our results show that proper electron doping can suppress the $(2 \times 2)$ CDW instability and the larger electron doping promotes a $(\sqrt{7} \times \sqrt{3})$ CDW phase involving a spontaneous breaking of the hexagonal crystal symmetry. Strain can affect the stability of doped monolayer 1T-TiS$_2$, but neither compressive strain nor tensile strain alone can stabilize the pristine one. When TiS$_2$ layers are decorated by metal atoms, such as Li, Na, K, Ca, and Al, the transferred charge can also suppress the $(2 \times 2)$ CDW instability. The stable doped 1T-TiS$_2$ is predicted to exhibit good phonon-mediated superconductivity, which can be further enhanced by strain. Our results reveal a unique CDW phenomenon in the electron-doped monolayer 1T-TiS$_2$ and that doping combined strain is efficient to modulate phonon softening, electron-phonon coupling, and superconductivity.

**INTRODUCTION**

Two-dimensional (2D) materials have attracted tremendous interest for their novel properties and potential applications.\textsuperscript{1-10} Specifically, monolayers of transition metal dichalcogenides (TMDCs), which in bulk form are stacked by weak van der Waals force, are excellent candidates for device applications beyond graphene-based functional materials.\textsuperscript{11-18} TiS$_2$ has drawn considerable attention because of the potential applications in batteries,\textsuperscript{19-26} supercapacitors,\textsuperscript{27} and thermoelectric devices.\textsuperscript{28-35} Recently, a monolayer form of octahedral TiS$_2$ (1T-TiS$_2$) has been isolated,\textsuperscript{36-39} which prefers to form the $(2 \times 2)$ charge density wave (CDW) phase.\textsuperscript{40} After many years of investigation, it is known that CDW may stem from electron-phonon coupling (EPC) or Fermi surface nesting, but there is not yet a universal theory that can explain all the observed CDWs.\textsuperscript{41-45} CDW transitions in TMDCs are a common phenomenon and a vital and popular research topic.\textsuperscript{46-51} CDWs in monolayer TMDCs are generally a planar projection of the corresponding bulk CDWs, such as 1T-TaS$_2$ (CDW: $\sqrt{13} \times \sqrt{13}$),\textsuperscript{52,53} trigonal prismatic NbSe$_2$ (2H-NbSe$_2$) ($3 \times 3$),\textsuperscript{54,55} and 1T-TiSe$_2$ (2 $\times$ 2)\textsuperscript{56} maintaining the symmetry of the hexagonal lattice. On the other hand, an unexpected $(\sqrt{7} \times \sqrt{3})$ CDW phase in which the hexagonal symmetry has been destroyed was observed in monolayer 1T-VSe$_2$.\textsuperscript{57-59} Recently, $(2 \times 2)$ CDW phases of 1T-TiTe$_2$ were observed in epitaxial films at room temperature.\textsuperscript{60} The CDW instability in monolayer 1T-TiTe$_2$ is similar to the phonon-mediated mechanism in 1T-TiSe$_2$.\textsuperscript{56,61} Generally, TMDCs exhibit strong electron-phonon coupling (EPC); thus, superconducting and CDW states may coexist in bulk or monolayer form.\textsuperscript{62-67} Remarkably, the transition between superconducting and CDW states in 2D TMDCs can be controlled by electron doping.\textsuperscript{68}

In this paper, we have investigated the effects of the charge doping and biaxial strain on the CDW of monolayer 1T-TiS$_2$. Our results show that proper electron doping can suppress the $(2 \times 2)$ CDW instability and the larger electron doping promotes a unique $(\sqrt{7} \times \sqrt{3})$ CDW phase. We carefully studied the electron doping range before CDW transition happens. As decorated...
by metal atoms, such as Li, Na, K, Ca, and Al, the accumulated charge on 1T-TiS₂ can also suppress the (2 × 2) CDW instability. The stable doped 1T-TiS₂ is predicted to exhibit good phonon-mediated superconductivity, which can be further enhanced by strain.

**COMPUTATIONAL DETAILS**

Our calculations were performed based on density functional theory (DFT) and density functional perturbation theory (DFPT) implemented in the QUANTUM-ESPRESSO package, employing the projector augmented-wave (PAW) pseudopotentials with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation energy functional. The plane-wave cutoff energies for wavefunctions and charge density were set to 60 Ry and 600 Ry, respectively. A vacuum region of 12 Å was adopted to avoid the interaction of the periodic images as the phonon spectra of monolayer 1T-TiS₂ and Na-intercalated bilayer 1T-TiS₂ have no remarkable difference from that at a vacuum of 20 Å (see Fig. S1 in the supplementary material). Of note, the vacuum thickness may affect the phonon frequency when charge is added/removed in the slab model as a uniform compensating background is required to maintain the charge neutrality (see Fig. S2 in the supplementary material). Therefore, the results obtained from the artificial charge doping in this work are qualitative. However, the vacuum thickness will not change the phonon frequency when 1T-TiS₂ is chemically doped as no charge compensating is necessary, and thus the results from chemical doping are quantitatively valid. All the structures were fully relaxed until the Hellmann-Feynman force on each atom was smaller than 10⁻³ Ry/Bohr. A Marzari-Vanderbilt cold smearing of 0.02 Ry was used for the corresponding electronic self-consistent cycles. For calculations of electronic properties, a Monkhorst-Pack k mesh of 24 × 24 × 1 was used. Phonon frequencies and EPC parameter λ were calculated with a phonon wave-vector mesh of 12 × 12 × 1 and a denser k mesh of 48 × 48 × 1, respectively.

**RESULTS AND DISCUSSION**

Figure 1(a) shows (2 × 2) and (\(\sqrt{7} \times \sqrt{3}\)) supercells, as well as the unitcell of monolayer 1T-TiS₂. The areas of the (2 × 2) and (\(\sqrt{7} \times \sqrt{3}\)) supercells are four and five times the area of the unitcell. The Brillouin zones of (2 × 2) and (\(\sqrt{7} \times \sqrt{3}\)) structures are shown in Figs. 1(b) and 1(c), comparing with that of unitcell. The optimized lattice constant of monolayer 1T-TiS₂ with the hexagonal crystal structure, \(a = b\), is 3.41 Å, in good agreement with the experimentally observed ones, 3.40 Å and 3.41 Å. A previous study has shown that the monolayer 1T-TiS₂ prefers to form (2 × 2) CDW phase than the normal phase because of a phonon mode with significant imaginary frequency at high symmetric point \(M\) in the Brillouin zone edges. The \(M\) points of the unitcell fold to \(\Gamma\) in the (2 × 2) supercell. Consequently, the system stabilizes by forming a (2 × 2) CDW phase with a distorted lattice (see Fig. S3 in the supplementary material).

A possibility for suppressing the CDW phase is by charge doping, as already suggested for monolayer 1T-TiSe₂, which also forms a (2 × 2) CDW phase at low temperature. The imaginary phonon frequency at \(M\) moves up and then becomes real with increasing electron doping, indicating that the CDW instability in monolayer 1T-TiS₂ can be effectively suppressed via electron doping. The phonon frequencies are all positive when the concentration of doping is 0.2 electrons per formula unit (e/f.u.), as shown in Fig. 1(d). Interestingly, the phonon softening obviously appears at \(S\) and \(T\) in the high symmetric paths as the concentration of electron doping is 0.7 e/f.u. [see Fig. 1(e)]. The Kohn instability at \(T\) becomes a dynamical instability as the doping concentration further increases to 0.8 e/f.u. In the high symmetric paths, the lengths of \(\Gamma \Sigma\) and \(\Gamma K\) closely match 3/5 √\(2\) and \(\sqrt{3}\), respectively. The \(T\) and \(S\) in the Brillouin zone of the unitcell fold to \(\Gamma\) in the (\(\sqrt{7} \times \sqrt{3}\)) supercell, which is precisely the condition for the formation of a (\(\sqrt{7} \times \sqrt{3}\)) CDW structure. The number of valence electrons in the 1T-TiS₂ with high doping concentration is close to that of VS₂ and VSe₂. Recently, a (\(\sqrt{7} \times \sqrt{3}\)) CDW phase has been observed in monolayer 1T-VSe₂. Monolayer 1H-VS₂ also tends to form a (\(\sqrt{7} \times \sqrt{3}\)) CDW phase, whereas monolayer 1T-VS₂ tends to form a (\(21 \times 3\)) CDW phase. This indicates that the formation of CDW in TMDC is complicated. Considering the stability of CDW phase from an energy perspective, we defined the CDW formation energy as

\[
\Delta E = E_{\text{CDW}} - E_{\text{IT}}.
\]

where \(E_{\text{CDW}}\) and \(E_{\text{IT}}\) are the total energies of the relaxed CDW phase and the normal phase, respectively. The results are shown in Fig. 2(a). The (2 × 2) CDW phase is 0.79 meV/f.u. lower than the undistorted and undoped 1T-TiS₂, in line with the previous local density approximation (LDA) value of 0.85 meV/f.u. The phase transition from a (2 × 2) CDW phase to normal phase occurs at a doping concentration of 0.11 e/f.u. Increasing the doping concentration to 0.8 e/f.u., the total energy of the (\(\sqrt{7} \times \sqrt{3}\)) CDW phase is 0.08 meV/f.u. lower than that of the normal phase. The (\(\sqrt{7} \times \sqrt{3}\)) CDW distorted structure is shown in Fig. 2(b), where five Ti atoms aggregate to form a V shape with a maximum displacement of 0.06 Å, which is similar to the displacement of Ti atoms in the (2 × 2) CDW phase. Another displacement in the (\(\sqrt{7} \times \sqrt{3}\)) CDW distorted structure, which involves two Ti atoms in the middle of the V shape, is slightly larger than 0.02 Å. The symmetry of the (\(\sqrt{7} \times \sqrt{3}\)) CDW distorted structure is lowered down to \(C\text{m}(\text{No. } 164)\); nevertheless, that of (2 × 2) CDW is \(P\text{m}\text{1}(\text{No. } 150)\).

In order to obtain the critical doping concentration of the phase transition, we carefully calculated the phonon frequency at \(M\) and \(T\) at various concentrations under the condition of a vacuum layer of 12 Å. The minimum phonon frequencies at \(M\) and \(T\) are summarized in Fig. 1(f). A vital issue is that when the minimum phonon frequency at \(M\) or \(T\) approaches zero. One critical point is at the doping of 0.11 e/f.u., corresponding for the phase transition from a (2 × 2) CDW phase to the normal phase. The other is at 0.75 e/f.u. for the normal phase to the (\(\sqrt{7} \times \sqrt{3}\)) CDW phase transition. Note that the lattice constant of electron-doped monolayer TiS₂ expands, compared to the pristine one. The extent of lattice distortion \(\Delta\) is defined as \(\Delta = (a' / a - 1) \times 100\%\), where \(a'\) and \(a\) are the fully relaxed lattice constants of doped and undoped monolayer 1T-TiS₂, respectively. If the lattice parameters are fixed to the undoped structure, the doped ones are under biaxial strain. We define the biaxial strain \(\varepsilon\) as \(\varepsilon = (a'' / a'') - 1) \times 100\%\), where \(a''\) is a pre-set lattice constant. The calculated results show that the extent of...
lattice distortion increases almost linearly with the increase of electron doping when the systems are fully relaxed [see the lower part of Fig. 1(f)]. For example, the lattice constant expands to $a' = 3.56$ Å with $\Delta = 4.3\%$ when the doping concentration is $0.5 \text{ e/f.u.}$ Strain may be a potential way to suppress the CDW phase, as in monolayer 1T-TiSe$_2$. Unfortunately, neither compressive nor tensile strains alone can stabilize the pristine monolayer 1T-TiS$_2$ (see Fig. S4 in the supplementary material).
Superconductivity can be induced in 1T-TiS₂ when the CDW phase is suppressed. Here, we estimate the Tₘ by using the McMillan–Allen–Dynes parameterized Eliashberg equation,

\[ T_m = \frac{\omega_{\text{log}}}{1.2} \exp \left( -\frac{1.04(1 + \lambda)}{\lambda - \mu' (1 + 0.62\lambda)} \right), \]

where \( \omega_{\text{log}} \) is the logarithmic averaged phonon frequency

\[ \omega_{\text{log}} = \exp \left( \frac{2}{\lambda} \int \frac{\alpha^2 F(\omega) \log(\omega)}{\omega} d\omega \right). \]

and \( \lambda \) is the total electron-phonon coupling constant

\[ \lambda = \sum_q \lambda_q = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega. \]

In Eq. (3), \( \alpha^2 F(\omega) \) is the Eliashberg spectral function, which is defined as

\[ \alpha^2 F(\omega) = \frac{1}{2\pi N(E_F)} \sum_q \delta(\omega - \omega_{\nu q}) \frac{\gamma_{\nu q}}{\hbar \omega_{\nu q}}. \]

Here, \( N(E_F) \) is the electronic density of states at the Fermi level, and the Dirac \( \delta \) function is simulated by a Gaussian function. \( \gamma_{\nu q} \) is the linewidth of the phonon mode \( \nu \) at a wave vector \( q \).

\[ \gamma_{\nu q} = 2\pi\omega_{\nu q} \sum_{ij} \left| g_{\nu q}(k, i, j) \right|^2 \delta(\epsilon_{q,i} - \epsilon_j) \delta(\epsilon_{k,i} - \epsilon_j) \Omega_{BZ}. \]

\( \Omega_{BZ} \) is the volume of the first Brillouin zone. \( g_{\nu q}(k, i, j) \) is the EPC matrix element for scattering an electron from a Bloch state \( iq \) to another state \( jq + k \), which is given by

\[ g_{\nu q}(k, i, j) = \sqrt{\frac{\hbar}{2M\omega_{\nu q}}} \langle \psi_{q,i} | dV/d\mathbf{u}_{\nu q} | \psi_{q+j,k} \rangle, \]

where \( V \) is the Kohn–Sham potential, and \( \mathbf{u}_{\nu q} \) is the atomic displacement.

Following previous studies, we use the Coulomb repulsion pseudopotential \( \mu' = 0.1 \) in this paper.

The calculated \( T_c \) for doped 1T-TiS₂ is shown in Fig. 3(a). The relation between \( T_c \) and electron doping is close to an up-parabola. The two ends of the curve show high \( T_c \) and the corresponding minimum phonon frequencies \( \omega \) at \( M \) and \( T \) are small positive values approaching zero [see the upper part of Fig. 1(f)]. An infinitesimal positive \( \omega \) in Eq. (4) can lead to a large \( \lambda \), resulting in high \( T_c \). The relation between \( \lambda \) and electron doping is also close to an up-parabola, whereas that between \( \omega_{\text{log}} \) and electron doping is of down-parabola (see Fig. S5 in the supplementary material). The superconducting \( T_c \) is below 1 K at doping concentrations ranging from 0.13 to 0.5 e/f.u. because of the hardening phonon spectra. When a compressive strain of 2.0% is applied, \( T_c \) increases by more than six times to 6.65 K at a doping of 0.13 e/f.u., indicating that \( T_c \) is sensitive to lattice strain. At a doping of 0.5 e/f.u., \( T_c \) increases by more than three times to 3.59 K when a tensile strain of 1.5% is applied, where the lattice constants of the strained system are equal to those at the doping concentration of 0.7 e/f.u. with full relaxation. At a doping level of 0.5 e/f.u., we observe a noticeable phonon softening at \( T \) [see Fig. 3(b)]. The phonon softening is further enhanced when tensile strain is applied or electron doping concentration becomes higher, and the corresponding phonon linewidth increases, resulting in a larger \( \lambda \) [see Figs. 3(c) and 3(d)]. Moreover, as shown in the inset of Fig. 3(a), at a doping level of 0.5 e/f.u., the electronic density of states at the Fermi level monotonically increases with lattice expansion, leading to a monotonically increasing \( T_m \).

The CDW instability in monolayer 1T-TiS₂ can also be effectively suppressed via hole doping (see Fig. S6 in the supplementary material). Imaginary phonon frequency is removed as the concentration of doping is 0.03 holes per formula unit (h/f.u.). \( T_c \) decreases sharply from 7.10 K to 0 as the doping concentration increases to 0.1 h/f.u. (see Fig. S7 in the supplementary material). In order to realize the chemical hole doping in 1T-TiS₂, F- and Cl-intercalated bilayer TiS₂ were considered. However, these structures are dynamically unstable (see Figs. S8 and S9 in the supplementary material).

Fortunately, electron doping can be realized by chemical doping. We primarily focused on two types of chemical doping. One is metal-intercalated bilayer 1T-TiS₂, denoted as MTiS₂₂ (M = Li, Na, K, Ca, or Al); the other is metal-deposited monolayer 1T-TiS₂, denoted as MTiS₂. For MTiS₂₂, we considered two configurations with stacking orders of CBACABC and ABCBABC [see Figs. 4(a) and 4(b)]. For instance, the phonon spectra, total energies, and \( T_c \) of Na(TiS₂)₂ with two different stacking orders are almost identical (see Fig. S10 in the supplementary material). The symmetry of the CBACABC configuration is higher than that of the ABCBABC configuration. Consequently, the computational cost of the CBACABC configuration is much lower than that of the ABCBABC configuration. For MTiS₂, the configuration with stacking order of CABC [see Fig. 4(c)] is more energetically stable than those of AABC and BABC. The following results are based on the configurations with stacking orders of CBACABC and CABC.
Table I summarizes the lattice constant, electron doping concentration, EPC constant, and $T_c$ of $\text{M(TiS}_2\text{)}_2$ and $\text{MTiS}_2$. The lattice constants expand when the systems are intercalated or deposited by Li, Na, K, or Ca. The lattice constants of $\text{Al(TiS}_2\text{)}_2$ and $\text{AlTiS}_2$ become smaller than that of $\text{1T-TiS}_2$ due to the shortest Al nearest neighbor distance (2.86 Å) among these bulk metals. The quantitative analysis of electron doping was done by Bader charge population analysis. Each TiS$_2$ is doped by 0.44 e, 0.40 e, or 0.38 e as Li, Na, or K intercalates bilayer TiS$_2$. LiTiS$_2$ becomes dynamically unstable due to the high doping concentration of 0.82 e/f.u. Ca(TiS$_2$)$_2$ is also dynamically unstable perhaps because Ca atoms donate too many electrons (1.32 e per Ca atom). Importantly, CaTiS$_2$, where the charge transition from Ca to TiS$_2$ is 0.79 e, is dynamically stable with the lattice constant expanding by 5.07%. Consequently, $T_c$ of CaTiS$_2$ reaches 9.59 K. Tensile strain can enhance $T_c$ of these systems on the condition that the structures remain dynamically stable [see Fig. 4(d)]. CaTiS$_2$ cannot bear a tensile strain of 1%, whereas NaTiS$_2$ and Na(TiS$_2$)$_2$ can bear strains of 3% and 5%, respectively. Table II provides the calculated values of $N(E_F)$, $\lambda$, $\omega$$_{\text{log}}$, and $T_c$ at maximum strain. As for Na...
(TiS₂)₂, the phonon softening at T point enhances gradually with increasing strain, and the system becomes dynamically unstable as strain reaches 6% (see Fig. S11 in the supplementary material), indicating that tensile strain can lead to a \((\sqrt{7} \times \sqrt{3})\) CDW phase transition. The highest \(T_c\) of Na(TiS₂)₂ with 5% strain and NaTiS₂ with 3% strain are 9.57 K and 11.69 K, respectively. There are phonon softening at \(T\) and \(S\) points for these two systems [see Figs. 5(a) and 5(b)]. The main contribution to EPC comes from the low-frequency phonons. Around each \(M\) point, there are two ellipses in the Fermi surface of unstrained Na(TiS₂)₂ [see Fig. S12(b) in the supplementary material]. Four electronic bands around \(\Gamma\) pass through the Fermi level at 5% strain (see Fig. S13 in the supplementary material). Consequently, four \(\Gamma\)-centered pockets appear on the Fermi surface of Na(TiS₂)₂ at 5% strain [see Fig. 5(c)], and the electronic density of states at the Fermi level increases significantly. The distribution of EPC constant \(\lambda\) in \(q\) space looks like a six-tooth gear, and the strongest EPC in \(q\) space is at \(T\) point under a strain of 5% [see Fig. 5(d)].

The Fermi surfaces of NaTiS₂ without and with a 3% strain have no remarkable difference [see Fig. 5(e) and Fig. S14(b) in the supplementary material], both showing a \(K\)-centered rounded triangle pocket. The nesting is obvious with nesting vectors \(q_1\), \(q_2\), and \(q_3\). The band structures of NaTiS₂ show that the band near the Fermi energy becomes less dispersive at a 3% strain compared to that of the unstrained one (see Fig. S15 in the supplementary material). Therefore, the electronic density of states of NaTiS₂ at the Fermi level also increases significantly under tensile strains. The EPC constant \(\lambda\) of NaTiS₂ at a 3% strain is twice greater than that of the unstrained one. The strongest EPC in \(q\) space is in a \(\Gamma\)-centered circle ring [see Fig. 5(f)]. These Fermi surfaces are

---

### TABLE I. Calculated values of lattice constant \(a\), lattice distortion \(\Delta\), electron doping \(N(E_F)\), \(\lambda\), \(\omega_{\text{log}}\), and \(T_c\). \(T_c\) was obtained using the McMillan–Allen–Dynes formula with \(\mu^* = 0.1\).

<table>
<thead>
<tr>
<th></th>
<th>(a) (Å)</th>
<th>(\Delta) (%)</th>
<th>(N(E_F)) (e/TiS₂) per cell</th>
<th>(\lambda) (K)</th>
<th>(\omega_{\text{log}}) (K)</th>
<th>(T_c) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li(TiS₂)₂</td>
<td>3.43</td>
<td>0.55</td>
<td>0.44</td>
<td>24.73</td>
<td>0.50</td>
<td>207.28</td>
</tr>
<tr>
<td>Na(TiS₂)₂</td>
<td>3.47</td>
<td>1.73</td>
<td>0.40</td>
<td>27.01</td>
<td>0.53</td>
<td>205.22</td>
</tr>
<tr>
<td>K(TiS₂)₂</td>
<td>3.52</td>
<td>3.08</td>
<td>0.38</td>
<td>29.23</td>
<td>0.55</td>
<td>200.96</td>
</tr>
<tr>
<td>Ca(TiS₂)₂</td>
<td>3.56</td>
<td>4.34</td>
<td>0.66</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>Al(TiS₂)₂</td>
<td>3.39</td>
<td>–0.60</td>
<td>0.78</td>
<td>30.21</td>
<td>0.70</td>
<td>197.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a) (Å)</th>
<th>(\varepsilon) (%)</th>
<th>(N(E_F)) (per cell)</th>
<th>(\lambda) (K)</th>
<th>(\omega_{\text{log}}) (K)</th>
<th>(T_c) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(TiS₂)₂</td>
<td>3.54</td>
<td>3.74</td>
<td>0.82</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>NaTiS₂</td>
<td>3.48</td>
<td>2.05</td>
<td>0.55</td>
<td>18.06</td>
<td>0.70</td>
<td>166.41</td>
</tr>
<tr>
<td>Al(TiS₂)₂</td>
<td>3.59</td>
<td>5.07</td>
<td>0.46</td>
<td>21.64</td>
<td>0.82</td>
<td>144.76</td>
</tr>
<tr>
<td>Ca(TiS₂)₂</td>
<td>3.58</td>
<td>4.76</td>
<td>0.79</td>
<td>21.70</td>
<td>1.78</td>
<td>72.60</td>
</tr>
<tr>
<td>AlTiS₂</td>
<td>3.34</td>
<td>–2.16</td>
<td>0.80</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

### Table II. Calculated values of \(N(E_F)\), \(\lambda\), \(\omega_{\text{log}}\), and \(T_c\) at certain biaxial strains \(\varepsilon\). \(T_c\) was obtained with \(\mu^* = 0.1\). The corresponding lattice constants \(a\) are also given.

<table>
<thead>
<tr>
<th></th>
<th>(a) (Å)</th>
<th>(\varepsilon) (%)</th>
<th>(N(E_F)) (per cell)</th>
<th>(\lambda) (K)</th>
<th>(\omega_{\text{log}}) (K)</th>
<th>(T_c) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(TiS₂)₂</td>
<td>3.65</td>
<td>5</td>
<td>37.74</td>
<td>1.06</td>
<td>126.46</td>
<td>9.57</td>
</tr>
<tr>
<td>K(TiS₂)₂</td>
<td>3.69</td>
<td>5</td>
<td>39.95</td>
<td>1.42</td>
<td>95.95</td>
<td>10.38</td>
</tr>
<tr>
<td>Al(TiS₂)₂</td>
<td>3.49</td>
<td>3</td>
<td>35.20</td>
<td>0.94</td>
<td>146.18</td>
<td>9.21</td>
</tr>
<tr>
<td>NaTiS₂</td>
<td>3.59</td>
<td>3</td>
<td>23.30</td>
<td>1.50</td>
<td>102.26</td>
<td>11.69</td>
</tr>
</tbody>
</table>

---

**Fig. 5.** Phonon dispersion with phonon linewidth \(\gamma_q\), phonon density of states, and Eliashberg function \(\alpha^2 F(\omega)\) with \(\lambda(\omega)\) for (a) Na(TiS₂)₂ under a biaxial strain of 5% and (b) NaTiS₂ under a biaxial strain of 3%. (c) Fermi surface and (d) distribution of EPC constant \(\lambda_q\) in \(q\) space for Na(TiS₂)₂ under a biaxial strain of 5%. (e) Fermi surface and (f) distribution of EPC constant \(\lambda_q\) in \(q\) space for NaTiS₂ under a biaxial strain of 3%.
mainly contributed by Ti-d orbitals. The Na-s orbitals do not contribute to Na(TiS2)4 but contribute about 20% to NaTiS2 (see Fig. S16 in the supplementary material).

We also considered Na-decorated 2D 1T-TiS2 in (2 × 2) supercells, denoted as Na(TiS2)4 and Na(TiS2)8 (see Figs. S17 and S18 in the supplementary material). There are slight distortions in these two configurations after full relaxation. Limited phonons are found to have imaginary frequency around Γ for Na(TiS2)4, whereas phonons across the whole Brillouin zone show imaginary frequency in Na(TiS2)8 (see Figs. S19 and S20 in the supplementary material). The calculated EPC constant of Na(TiS2)4 is 0.29. Each unit of TiS2 is doped by 0.21 electrons in Na(TiS2)4; thus, this result is in line with the EPC constant variation of monolayer 1T-TiS2 as a function of electron doping (see Fig. S5 in the supplementary material).

CONCLUSION

In summary, we have performed DFT calculations to investigate the effects of charge doping and biaxial strain on the CDW transitions of monolayer 1T-TiS2. Monolayer 1T-TiS2 tends to form a (2 × 2) CDW superlattice, which can be effectively suppressed by electron doping (ranging from 0.11 to 0.75 e/f.u. under the condition of a vacuum layer of 12 Å). As the electron doping concentration is over 0.76 e/f.u., an unexpected (\(\sqrt{7} \times \sqrt{3}\)) CDW phase involving a spontaneous breaking of the hexagonal crystal symmetry becomes the ground state. In addition, the dynamic stability of doped monolayer 1T-TiS2 can be tuned by strain. However, neither compressive nor tensile strains alone can stabilize undoped monolayer 1T-TiS2. When decorated by metal atoms, such as Li, Na, K, Ca, and Al, the (2 × 2) CDW instability can also be suppressed because of electron transfer to the TiS2 layers. The stable 1T-TiS2 with charge doping or with chemical doping is predicted to exhibit good phonon-mediated superconductivity, which can be further enhanced by strain.

SUPPLEMENTARY MATERIAL

See the supplementary material for phonon dispersions of TiS2 in the presence of doping and strain, and electronic properties of Na(TiS2)4 and NaTiS2.

ACKNOWLEDGMENTS

This work was supported by the Guangdong Natural Science Funds for Distinguished Young Scholars (Grant No. 2014A030306024), the National Science Foundation of China (NSFC) (Grant Nos. 11574088, 11704322, and 51706192), the Guangdong Natural Science Funds for Doctoral Program (Grant No. 2017A030310086), and the Shandong Natural Science Funds for Doctoral Program (No. ZR2017BA017). The computations were performed using research computing facilities offered by Information Technology Services, the University of Hong Kong.

REFERENCES


