Fe, Mn, and Cr doped BiCoO$_3$ for magnetoelectric application: a first-principles study

Xing-Yuan Chen1, Ren-Yu Tian1, Jian-Ming Wu1, Yu-Jun Zhao1, Hang-Chen Ding2 and Chun-Gang Duan2,3

1 Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
2 Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People’s Republic of China
3 National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, People’s Republic of China

E-mail: zhaoyj@scut.edu.cn, wxbdcg@gmail.com and cgduan@clpm.ecnu.edu.cn

Received 27 April 2011, in final form 23 June 2011
Published 28 July 2011
Online at stacks.iop.org/JPhysCM/23/326005

Abstract

The tetragonal compound BiCoO$_3$ may play a significant role in magnetoelectric devices if its magnetism can be tuned and its strong ferroelectricity maintained. Here we have studied Fe, Mn, and Cr doped BiCoO$_3$ with a concentration of 12.5\% by density functional theory (DFT) and DFT $+U$ calculations. It is found that all the doped magnetic ions favor ferromagnetic coupling in the C-type antiferromagnetic BiCoO$_3$ lattice, leading to net magnetic moments of 1, 1, 0 μ_B for Bi$_{8}$Co$_{7}$XO$_{24}$, where X = Fe, Cr, and Mn, respectively. Meanwhile, the Berry phase calculations indicate that the strong ferroelectricity is almost preserved for Fe, Cr, and Mn doped BiCoO$_3$, with values of 172.7, 152.1, and 169.8 μC cm$^{-2}$, respectively, close to the original polarization value of 174.9 μC cm$^{-2}$. As a result, Cr or Fe doping may be useful to make the BiCoO$_3$ system ferrimagnetic while maintaining its excellent ferroelectric performance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Multiferroic materials are materials which possess two or more ferroic orderings, e.g., (anti)ferromagnetic, ferroelectric, ferrotoroidic and ferroelastic orderings, in the same phase [1, 2]. As a result, they generally have a spontaneous magnetization which can be switched by an applied magnetic field, or a spontaneous polarization tunable by an applied electric field [3]. More interestingly, couplings between these ferroic orderings offer more degrees of freedom in the design of modern electronic devices [4–8]. Indeed, a number of device applications have been proposed for multiferroic materials, including multi-state memory elements [9, 10], electric field controlled ferromagnetism [11, 12] and magnetic field controlled ferroelectricity [13–15].

In the study of multiferroic materials, special focus has been given to bismuth-based perovskite-structure oxides [16–23], as they generally demonstrate strong ferroelectricity and magnetic orderings at room temperature. Among them, BiCoO$_3$, as a new bismuth-based perovskite-structure oxide with an excellent ferroelectric property, has recently been studied by many groups for its potential application in magnetoelectronic devices [24–30]. Like most other bismuth-based multiferroic materials, however, the magnetic interaction of BiCoO$_3$ is dominated by the short-range antiferromagnetic (AFM) coupling through the superexchange interaction via anions and has no or very weak macroscopic magnetization [31]. A neutron powder diffraction experiment verified that BiCoO$_3$ is a C-type AFM (C-AFM) insulator below the Néel temperature of 470 K [24]. It was also revealed by density functional theory (DFT) calculations that the insulating C-AFM structure is the most stable phase among all the possible spin configurations for the tetragonal phase of BiCoO$_3$ with a large c/a of 1.27 [26].
Clearly, BiCoO$_3$ will be of much interest in many multiferroic devices if its magnetic property can be improved. To introduce net magnetic moments in the AFM BiCoO$_3$, a natural choice is to dope magnetic ions with magnetic moments different from that of the Co ions. In fact, Baettig and Spaldin have predicted by ab initio calculations that Bi$_2$FeCrO$_6$ (BFCO) is a ferrimagnetic and ferroelectric material with a magnetic moment of 2 \(\mu_B \) \(/f.u. \) and a polarization of 80 \(\mu_C \) \(c.m. \) \(^-[18]\). Nechache et al reported a saturated magnetization of 20 emu cm\(^-3\) in their experimental study of epitaxial BFCO thin films \([22]\). Recently, BiCr$_{0.5}$Mn$_{0.5}$O$_3$ has been synthesized at high pressure and high temperature with weak ferromagnetism at low temperatures and showing a giant dielectric constant at room temperature \([32]\). These studies suggest that it is possible to dope other magnetic ions into the BiCoO$_3$ system.

In this work, we have studied Fe, Mn, and Cr doped BiCoO$_3$ with a concentration of 12.5\% through ab initio calculations. We find that all the magnetic impurity ions energetically favor ferromagnetic (FM) coupling. In particular, Cr and Fe doping keep the strong ferroelectricity of BiCoO$_3$ while providing net magnetic moments. Mn doping shows weak insulating behavior and provides no macroscopic magnetization. Detailed analysis reveals that interactions between magnetic ions and O ions play critical roles in the multiferroic properties of the doped systems.

2. Computational details

This work was performed by a plane wave method with the interactions between valence electrons and ions represented by the projector augmented wave (PAW) pseudo-potentials as implemented in the Vienna ab initio simulation package (VASP) \([33]\). The generalized gradient approximation (GGA) of the PW91 functional for the exchange and correlation potential was employed \([34]\). The GGA calculation of transition metal oxides usually leads to a significant underestimation of the band gap. In order to give a better description of the strongly correlated nature of the 3d transition metal ions and obtain more accurate band gaps we therefore adopt the GGA + \(U \) method, in which \(U \) represents the on-site repulsion energy term originating from the Hubbard model for strongly correlated systems \([35]\). A \(4 \times 2 \times 2 \) supercell of BiCoO$_3$, as shown in figure 1, is employed to simulate the magnetic ion (X = Fe, Mn, Cr) doping at a concentration of 12.5\%. Here, the doping concentration of 12.5\% for the dopants in BiCoO$_3$ is considered since it is expected to be feasible in experiments and the corresponding calculations are affordable. A \(6 \times 6 \times 6 \) Monkhorst–Pack grid \([36]\) is used for the \(2 \times 2 \times 2 \) supercell and the energy cutoff is set to as high as 500 eV in the calculations. Meanwhile, a \(4 \times 2 \times 2 \) superlattice (cf figure 2) is employed to investigate the magnetic coupling between two impurity ions, with a \(2 \times 3 \times 3 \) Monkhorst–Pack grid \([36]\) and energy cutoff of 400 eV. The large supercells adopted in the calculations allowed us to simulate various distributions of dopants and their magnetic configurations. The convergence criterion for the electronic energy is \(10^{-4} \) eV and the structures are relaxed until the Hellmann–Feynman forces are less than 0.02 eV \(\AA \)^\(-1\). The high convergence criterion guaranteed the accuracy of the calculated results. All the structures were fully relaxed.

3. Results and discussion

3.1. Structural properties

The lattice of BiCoO$_3$ has a tetragonal structure (space group \(P4mn \)), with \(a = 3.719 \) \(\AA \), \(c = 4.719 \) \(\AA \) \((c/a = 1.27) \) at 5 K determined by the Rietveld method from neutron diffraction
of magnetic configurations with respect to C-AFM. Variations in Fe, Mn, and Cr ions in the doped C-AFM require 0.65, 0.11, and 0.27 eV to reverse the spin ferroelectricity is expected to be greater with a larger configurations are listed in table 1. It is clear from table 1 that all three employed in first-principles studies. The calculated results approximation by the non-spin-polarized calculation typically the PM configuration stands for the paramagnetic state, here spin-reversed configuration means that the spin of the magnetic impurities is reversed with respect to the most stable C-AFM lattice; the PM configuration stands for the paramagnetic state, here approximated by the non-spin-polarized calculation typically employed in first-principles studies. The calculated results are listed in table 1. It is clear from table 1 that all three doped systems have C-AFM as their most stable magnetic configurations. This is because the superexchange interaction is strong in BiCoO3, which is also confirmed by the fact that it requires 0.65, 0.11, and 0.27 eV to reverse the spin orientations of Fe, Mn, and Cr ions in the doped C-AFM BiCoO3, respectively. Our calculated c/a values are 1.29, 1.27, and 1.28 for Fe, Mn, and Cr doped BiCoO3, respectively, very close to that of pure BiCoO3 (i.e. 1.29). Generally, the ferroelectricity is expected to be greater with a larger c/a in a tetragonal perovskite structure [26, 37]. The large values of c/a suggest that Fe, Mn, and Cr doped BiCoO3 may maintain the original strong ferroelectricity. Cai et al reported that in pure BiCoO3 hybridizations between Bi–O and Co–O play important roles for the nature of the ferroelectricity and ferromagnetism [26]. Detailed discussions on the impurity ion interaction with the O ion and the spontaneous ferroelectric polarization using the modern polarization theory of Berry phase methods [38] will be presented later.

Magnetic properties

Although it is confirmed that C-AFM is maintained in the 2 × 2 × 2 supercell of Bi8Co7XO24, it is still not clear whether the impurity ions could provide net magnetic moments or not. Obviously, the impurity ion provides no net moments when it possesses the same moment as Co as the local magnetic moments of the dopants will be canceled out by the AFM coupled Co ions. Even if the impurity ion possesses a different magnetic moment, it still could not provide a net magnetic moment if the impurity ions themselves favor AFM coupling. This situation was not sufficiently studied in earlier works [18, 21, 22]. Here a 4 × 2 × 2 supercell (cf figure 2) is employed to study the favorable positions of two magnetic

Table 1. Energies of Bi8Co7XO24 (X = Fe, Mn, Cr) for different magnetic configurations with respect to C-AFM.

<table>
<thead>
<tr>
<th>Spin</th>
<th>C-AFM</th>
<th>G-AFM</th>
<th>A-AFM</th>
<th>FM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe doped</td>
<td>0</td>
<td>651</td>
<td>158</td>
<td>1018</td>
<td>2457</td>
</tr>
<tr>
<td>Mn doped</td>
<td>0</td>
<td>110</td>
<td>125</td>
<td>854</td>
<td>1676</td>
</tr>
<tr>
<td>Cr doped</td>
<td>0</td>
<td>273</td>
<td>132</td>
<td>620</td>
<td>1602</td>
</tr>
</tbody>
</table>

Table 2. Total energies (in meV) of nine kinds of nonequivalent magnetic configurations in a supercell of Bi16Co14X2O48 (X = Fe, Mn, Cr), with respect to the energy of their most stable magnetic configurations. Configurations X-1, 3, 4, 7, 8 correspond to FM coupling, and X-2, 5, 6, 9 correspond to AFM coupling.

<table>
<thead>
<tr>
<th>Config. X</th>
<th>FM</th>
<th>AFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-1</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>X-2</td>
<td>72</td>
<td>8</td>
</tr>
<tr>
<td>X-3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>X-4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>X-5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>X-6</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>X-7</td>
<td>211</td>
<td>8</td>
</tr>
<tr>
<td>X-8</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>X-9</td>
<td>252</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 3. The total magnetic moments of Bi8Co7XO24 (X = Fe, Mn, Cr) with respect to the U_{eff} values.

Figure 2. Total energies (in meV) of nine kinds of nonequivalent magnetic configurations in a supercell of Bi16Co14X2O48 (X = Fe, Mn, Cr) with respect to the energy of their most stable magnetic configurations. Configurations X-1, 3, 4, 7, 8 correspond to FM coupling, and X-2, 5, 6, 9 correspond to AFM coupling.
Electronic configuration of 3d levels under octahedral and tetragonal crystal field splitting. The corresponding occupations for 3d electrons of \(\text{Co}^{3+} \), \(\text{Fe}^{3+} \), \(\text{Mn}^{3+} \), and \(\text{Cr}^{3+} \) are shown with red arrows.

The tetragonal symmetry of the current systems will further split these orbital states into \(d_{x^2-y^2} \), \(d_{z^2} \), \(d_{xy} \) and double degenerate \(d_{xz} \) and \(d_{yz} \) states, as shown in figure 4. The \(\text{Co}^{3+} \) (d\(^6\)), \(\text{Fe}^{3+} \) (d\(^5\)), \(\text{Mn}^{3+} \) (d\(^4\)), and \(\text{Cr}^{3+} \) (d\(^3\)) ions are expected to possess 4 \(\mu_B \), 5 \(\mu_B \), 4 \(\mu_B \), and 3 \(\mu_B \) magnetic moment at high spin configuration, respectively. This suggests that the doped Fe(Cr) contributes 1 (−1) \(\mu_B \) net magnetic moment while Mn doping provides no net magnetic moment as Mn ion has the same magnetic moment as that of Co ion.

In reality, however, the transition metal ions are not ideal \(\text{Co}^{3+} \) ions in the system based on charge transfer analysis, and the interactions between the O ions and magnetic ions play critical roles in the magnetic properties as reflected in the spin charge density plot (see figure 5). The magnetic moments within a
sphere of radius 1.302 Å for Co, Fe, Mn, and Cr are close to 3, 4, 4, and 3 μ_B (see table 3), respectively. There are five neighboring O ions to the magnetic ions forming a pyramid structure. The magnetic ions are located at an off center position of the pyramid structure of five O ions. The O ion at the top of the pyramid structure along the [001] direction is denoted as O1, and the other four equivalent O ions are denoted as O2, as indicated in figure 1. As listed in table 3, the magnetic moments of the O1 ions bonded to the impurity Fe, Mn, and Cr ions are 0.22, 0.08, and $-0.01 \mu_B$, respectively, within a sphere of radius of 0.820 Å. The corresponding moments for O2 bonded to Fe, Mn, and Cr ions are 0, -0.10, and $-0.09 \mu_B$, respectively. Here negative moments stand for opposite spins to that of the bonded transition metal ions. The magnetic moments of O1 and O2 around the Co ions are 0.3 and 0 μ_B, respectively. The bond lengths between the magnetic ions and O ions are also listed in table 3, suggesting strong correlation between the bond length and the magnetic moments of the O ions. In the pure BiCoO$_3$, O1 is surrounded by Co ions of nonequivalent distance, while O2 is surrounded by two Co ions of the same distance but inverse spin orientations. As a result, O2 has no net magnetic moment while O1 has a moment of $\sim 0.3 \mu_B$ in pure BiCoO$_3$. Like the superexchange of Co–O1–Co in pure BiCoO$_3$, Co–O1–Fe superexchange shows strong asymmetry. This introduces 0.22 μ_B magnetic moments at O1 and no remnant magnetic moment for O2. In figure 5, the spin charge density shows an obvious net spin magnetic moment at the O1 ion bonded to the Fe ion and an antisymmetric distribution at the O2 ions bonded to the Fe ion. As a result, the net magnetic moments in the Fe doped system are mainly produced by the difference between the local magnetic moments of the Fe and Co ions. The bond lengths of Mn–O1 and Cr–O1 become longer, and, in particular, the Mn–O1 distance is greater than that of Mn–O2, leading to a significant reduction of the local magnetic moments at O1 bonded to the impurity ions. This enhances the interactions of Mn–O2–Cr and Cr–O2, and therefore increases the net magnetic moments at the O2 ion of reversed spin relative to that of O1. As shown in figure 5, the spin charge densities of the O2 ion bonded to the Mn or Cr ions show remnant magnetic moments, in contrast to the Fe doping case. The changes of local magnetic moments at the O1 and O2 ions bonded to the impurity ions, in fact, reduce the total moments in the spin direction of the impurity ions. As a consequence, the Mn doping system provides no remnant magnetic moment despite a difference of around 1 μ_B local magnetic moment between Mn and Co ions, while Cr doping induces $\sim 1 \mu_B$ net magnetic moment although the local moment of the Cr ion is nearly the same as that of Co.

Table 3. The calculated bond lengths between the transition metal (TM) ions and O ions and the corresponding magnetic moments for $U_{\text{eff}} = 4$ eV. O1 and O2 are the apical and planar oxygen atoms, respectively.

<table>
<thead>
<tr>
<th>Bond length (Å)</th>
<th>Co–O1</th>
<th>Co–O2</th>
<th>Fe–O1</th>
<th>Fe–O2</th>
<th>Mn–O1</th>
<th>Mn–O2</th>
<th>Cr–O1</th>
<th>Cr–O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic moment (μ_B)</td>
<td>O</td>
<td>TM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.78</td>
<td>1.99</td>
<td>1.83</td>
<td>2.00</td>
<td>1.99</td>
<td>1.95</td>
<td>1.90</td>
<td>1.99</td>
</tr>
<tr>
<td>TM</td>
<td>2.95</td>
<td>4.09</td>
<td>3.70</td>
<td>2.85</td>
<td>3.70</td>
<td>2.85</td>
<td>3.70</td>
<td>2.85</td>
</tr>
</tbody>
</table>

Figure 6. The calculated band gaps with respect to the adopted U_{eff} values for pure and Fe, Mn, and Cr doped BiCoO$_3$.

3.3. Ferroelectric and insulating properties

Ferroelectric materials must be insulators. Indeed, the greater the energy gap of the ferroelectric, the less electric leakage during the ferroelectric switching process is expected. Doping magnetic impurities in Bi-based perovskites, however, generally degrades the insulating behavior and thus the ferroelectricity of the materials. Therefore, it is instructive to study the band gap of the doped BiCoO$_3$. For the reason mentioned before, we perform additional electronic structure calculations with the GGA + U method. As a qualitative investigation, we employed the same U_{eff} values for the Co, Fe, Mn, and Cr elements with a series of values 0, 3, 4, 5, 6, 8 eV in the additional electronic structure calculations. We have listed the band gaps of BiCoO$_{0.87}$X$_{0.13}$O$_3$ (X = Fe, Mn, Cr) with respect to the Hubbard U_{eff} in figure 6. When $U_{\text{eff}} = 0$, we find no band gaps in any of the systems. Only when the Hubbard U_{eff} is turned on can the band gaps appear. This, again, shows the importance of taking into account the on-site Coulomb repulsion effect. Of all the doped situations, we find that the Fe doping systems have the largest band gaps within the GGA + U framework. The band gap of Fe doped system increases from 0 to 1.61 eV as the value of U_{eff} changes from 0 to 5 eV, while it becomes narrower with increasing values of U_{eff} beyond 6 eV. The situations are similar in the Mn and Cr doped systems, where their largest band gaps (0.66 eV for Mn and 1.19 eV for Cr) emerge at $U_{\text{eff}} = 4$ eV and $U_{\text{eff}} = 6$ eV, respectively. The relative values of the band gaps follow the series of pure BiCoO$_3$ > BiCoO$_3$: Fe > BiCoO$_3$: Cr > BiCoO$_3$: Mn, independent of the U_{eff} values.
Figure 7. The projected DOS of (a) Fe, (b) Mn, and (c) Cr doped BiCoO$_3$ corresponding to $U_{\text{eff}} = 4$ eV, where the VBM is set to 0 and the spin up and down plots are denoted by positive and negative values, respectively. The shaded plots correspond to the Co ion.

The change of the energy gap with different doping ions can be explained by projected density of states (DOS) analysis. As we know, the valence band maximum (VBM) and the conduction band minimum (CBM) of the ferroelectric phase of tetragonal ABO$_3$ perovskite are generally determined by the electronic states of the B atom and the bonded O atoms. From figure 7, which shows the projected DOS of doped BiCoO$_3$ with $U_{\text{eff}} = 4$ eV, we can see that the energy levels of the occupied 3d states of the dopants and the Co ion are in the series Cr $>$ Mn $>$ Fe $>$ Co. Therefore the VBM region is dominated by the occupied 3d states of the doping ions, which are hybridized with O1 atoms to some extent. As the occupied Fe 3d states have slightly higher energy than that of the Co ions, the gap in the Fe doped system is thus determined by the occupied Fe 3d states and the unoccupied Co 3d states. Therefore, the energy gap of the Fe doped system is just a little bit smaller than that of the pure BiCoO$_3$ system. Noticing that the unoccupied 3d states of both the Fe and Co ions are actually spin down states, we see that the gaps are indeed opened by the on-site Coulomb repulsion effect. The situations for Cr and Mn doped systems, however, are quite different, since the 3d states of these ions are less than half filled. For Cr ions, the energy level of the unoccupied d_{z^2} state is about 1.2 eV above the Fermi level, which is similar to that of the lowest unoccupied 3d state of the Co atom. For Mn atoms, the unoccupied $d_{x^2−y^2}$ state is only about 0.6 eV above the Fermi level, much lower than that of the lowest unoccupied Co 3d state. The energy gap of the Mn doped system is then determined by the occupied and unoccupied Mn 3d states. This also explains why the energy gaps of the Mn doped system are not sensitive to the Hubbard U_{eff} after $U_{\text{eff}} > 4$ eV.

The spontaneous ferroelectric polarizations of BiCo$_{0.875}$X$_{0.125}$O$_3$ (X = Fe, Mn, Cr) have been calculated by the Berry phase method [38]. The results indicate that the spontaneous ferroelectric polarization of pure BiCoO$_3$ and BiCo$_{0.875}$X$_{0.125}$O$_3$ (X = Fe, Mn, Cr) are 174.9, 172.7, 152.1, and 169.8 μC cm$^{-2}$, respectively. The spontaneous ferroelectric polarization directions of the pure and doped systems are all nearly along the [001] direction, and the calculated values have no apparent dependence on the employed Hubbard U_{eff} values as the structures have no significant changes as long as the energy gap is opened. Note that our calculated ferroelectric polarization of pure BiCoO$_3$ (174.9 μC cm$^{-2}$) is in excellent agreement with earlier works [22, 25]. We find that the decrease of the ferroelectric polarizations of the doped system can be roughly attributed to the smaller ferroelectric polarizations of the bulk BiXO$_3$ (X = Fe, Mn, Cr) system, with the values of 155.7, 117.3, and 90.0 μC cm$^{-2}$, respectively. The fact that the Mn doped system has a smaller ferroelectric polarization than that of the Cr doped system might be caused by the much weaker hybridization between the Mn and O1 ions, as is clearly shown in figure 7. This is also confirmed by Born effective charge (BEC) analysis [40]. The BEC of Mn (3.12) in the doped system is smaller than that of Cr (3.27), whereas the displacements between Mn/ Cr and the O2 plane (0.58/0.57 Å) are nearly the same. This explains why the polarization of Mn doping is smaller than that of Cr doping.

4. Conclusion

In summary, our theoretical study indicates that doped Cr and Fe ions could be FM ordered in BiCoO$_3$ and provide a net magnetic moment of 1 μ_B per impurity in BiCoO$_3$, while the Mn doped system does not provide macroscopic
magnetization. The magnetism of the Mn, Fe, and Cr doped BiCoO$_3$ is explained with a simple crystal field theory, as well as local interactions between the oxygen ions and the magnetic cations. Meanwhile, Berry phase calculations demonstrate that the strong ferroelectricity of pure BiCoO$_3$ is almost maintained in these doped systems. The potential use of Fe and Cr doped BiCoO$_3$ in magnetoelectric applications is suggested by their confirmed macroscopic magnetism and strong ferroelectricity.

Acknowledgments

We are grateful for the computer time at the High Performance Computer Center of Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science. This work was supported by NSFC (Grant Nos 10704025, 50771072, 50832003), PCSIRT, NCET-08-0202, Education Foundation of Science and Technology Innovation of the Ministry of Education, China (Grant No. 708070), and the Fundamental Research Funds for the Central Universities, SCUT, 2009ZZ0068/2009ZM0165.

References

[32] Mandal P, Iyo A, Tanaka Y, Sundaresan A and Rao C N R 2010 Structure, magnetism and giant dielectric constant of BiCr$_{0.5}$Mn$_{0.5}$O$_3$ synthesized at high pressures J. Mater. Chem. 20 1646
[33] Kresse G and Furthmüller J 1996 Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 6 15
[34] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758
 Density-functional theory and strong interactions: orbital
 ordering in Mott–Hubbard insulators Phys. Rev. B 52 R5467
 2010 Ferroelectricity in perovskites with s\(^{\pm}\) A-site cations:
 toward near-room-temperature multiferroics Angew. Chem.
 Int. Edn Engl. 49 1603
[38] Kingsmith R D and Vanderbilt D 1993 Theory of polarization
 of crystalline solids Phys. Rev. B 47 1651
[39] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and
 Sutton A P 1998 Electron-energy-loss spectra and the
 structural stability of nickel oxide: an LSDA + U study
 Phys. Rev. B 57 1505
[40] Pick R M, Cohen M H and Martin R M 1970 Microscopic
 theory of force constants in the adiabatic approximation
 Phys. Rev. B 1 910